DOI: 10.32725/978-80-7394-976-1.35

Consumer prices forecasting based on ARIMA models

Ondřej Šimpach
Prague University of Economics and Business, Faculty of Informatics and Statistics, Department of Statistics and Probability, W. Churchill Sq. 1938/4, 130 67 Prague 3, Czech Republic, ondrej.simpach@vse.cz.


High consumer prices and high inflation afflicted many countries in the world recently. The cause is the Covid epidemic and Russian aggression in Ukraine, which primarily led to an increase in energy prices. In the Czech Republic, the inflation reached 17.5% in June 2022. The rapid increase of consumer prices has consequences. The number of poor people that depend on social benefits is growing. Government prepares measures and subsidies and for low income households. For policymaking and planning, a projection of the consumer prices development in the future is needed. Therefore, the aim of the paper is to project the prices of basic food: bread, butter, milk, poultry, potatoes, sugar, and eggs. The data were taken from Czech Statistical Office with monthly frequency for the period of 2010–2022 in order to have long time series. We applied Box-Jenkinson methodology – SARIMA and ARIMA models and modelled the development of the time series and forecast to the future 12 months. For bread prices forecast, an ARIMA model is preferred. In case of butter, both models forecast slight decrease of price. and we cannot clearly conclude which model is better. In case of milk projection, SARIMA is in contrast with ARIMA, but both models could be realistic as the price of milk is very volatile throughout the whole period. For price of chicken and potatoes, both forecasts are in contrary, but ARIMA is more probable. SARIMA model projects more realistic development of sugar price. In case of eggs price, both models project stabilization, so it cannot be concluded which model is preferred.However, econometric correctness and the best fit of the model is not a guarantee that projected values would meet the expectations based on the theory and practical experiences.

Klíčová slova: ARIMA models, consumer prices, forecasting, inflation

stránky: 236-243



Reference

  1. Box, G. & Jenkins, G. (1970). Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day.
  2. Bradley, M. D., Jansen D. W. & Sinclair, T. M. (2015). How Well Does "Core" Inflation Capture Permanent Price Changes? Macroeconomic Dynamics, 19(4), 791-815. DOI: 10.1017/S1365100513000618 Přejít k původnímu zdroji...
  3. CZSO (2022). Indexy spotřebitelských cen. CZSO. Available from https://vdb.czso.cz/vdbvo2/faces/cs/index.jsf?page=vystup-objekt&z=G&f=GRAFICKY_OBJEKT&pvo=CEN08B3&skupId=2218&katalog=31779&evo=v1877_%21_CEN-SPO-MEZIR-EM_1&str=v589 [Cit. 2022-08-10]
  4. El Ghini, A., & El-Karimi, M. (2020). Global Food Commodity Prices and Domestic Food Inflation: Some Insights from Morocco. New Medit, 19(3), 57-76. DOI: 10.30682/nm2003d Přejít k původnímu zdroji...
  5. García-Germán, S., Bardají, I. & Garrido, A. (2015). Evaluating price transmission between global agricultural markets and consumer food price indices in the European Union. Agricultural EconomicsVolume, 47(1), 59-70. Přejít k původnímu zdroji...
  6. Hassani, H., Silva & E.S. (2018). Forecasting UK consumer price inflation using inflation forecasts. Research in Economics, 72(3), 367-378. DOI: 10.1016/j.rie.2018.07.001 Přejít k původnímu zdroji...
  7. Jadhav, V., Reddy, B.V.C. & Gaddi, G.M. (2017). Application of ARIMA Model for Forecasting Agricultural Prices. Journal of Agricultural Science and Technology, 19(5), 981-992.
  8. Li, J.W. & Zhao, B. (2015). Research on Asymmetric Fluctuation of Consumer Price Index for Food in China. Proceeding of the 4th International Conference on Social Sciences and Society, 134-138.
  9. MoA (Ministry of Agriculture) (2021a) Situační a výhledová zpráva: Obiloviny. Odbor zemědělských komodit MZe. ISBN 978-80-7434-651-4. Available from https://eagri.cz/public/web/file/702121/SVZ_Obiloviny_12_2021.pdf [cit. 2022-08-23]
  10. MoA (2021b.) Situační a výhledová zpráva: Mléko. Odbor zemědělských komodit MZe. Available from https://eagri.cz/public/web/file/670746/Mleko_2020_WEB.pdf [cit. 2022-08-23]
  11. MoA (2021c). Situační a výhledová zpráva: Drůběž - drůběží maso a vejce. Odbor zemědělských komodit MZe. Available from https://eagri.cz/public/web/file/682901/Drubez_2021_web.pdf [cit. 2022-08-23]
  12. MoA (2021d). Situační a výhledová zpráva: Brambory. Odbor zemědělských komodit MZe. Available from https://eagri.cz/public/web/file/706553/SVZ_Brambory_11_2021.pdf [cit. 2022-08-23]
  13. MoA (2021e). Situační a výhledová zpráva: Cukr-cukrová řepa. Odbor zemědělských komodit MZe. Available from https://eagri.cz/public/web/file/697813/CUKR_12_2020.pdf [cit. 2022-08-23]
  14. Novković, N. Mutavdzić, B., Ivanišević, D., Drinić, L. & Vukelić, N. (2019). Models for Forecasting the Price of Wheat and Maize in Serbia. Journal on Processing and Energy in Agriculture, 23(3), 128-141. Přejít k původnímu zdroji...
  15. Pechrová, M. & Šimpach, O. (2017). Modelling the Development of the Consumer Price of Sugar. Proceedings of the 35th International Scientific Conference Mathematical Methods in Economics, September 13-15, 2017, 527-531.
  16. Pechrová, M. & Šimpach, O. (2017). Modelling the Development of Eggs Prices in the CR. Proceedings of the International Conference Hradec Economic Days 2017, 682-688.
  17. Sangsefidi, S. J., Moghadasi, R., Yazdani, S. & Nejad, A.M. (2015). Forecasting the prices of agricultural products in Iran with ARIMA and ARCH models. International Journal of Advanced and Applied Sciences, 2(11), 54-57.
  18. Šimpach, O. & Šimpachová Pechrová, M. (2018). Development of Milk Prices in the Czech Republic. Proceedings of the International Conference Hradec Economic Days 2018, 378-388. DOI: 10.36689/uhk/hed/2018-02-037 Přejít k původnímu zdroji...
  19. Šimpach, O. & Šimpachová Pechrová, M. (2018). Food availability and the development of the consumer prices of meat. Proceedings of the 27th International Scientific Conference Agrarian Perspectives XXVII. September 19-20, 2018, 401-407.
  20. Šoškić, D. (2015). Inflation Impact of Food Prices: Case of Serbia. Ekonomika Poljoprivreda-Economics of Agriculture, 62(1), 41-51. Přejít k původnímu zdroji...
  21. Wang, H. J. & Zhao, W. G. (2009). ARIMA Model Estimated by Particle Swarm Optimization Algorithm for Consumer Price Index Forecasting. Artificial Intelligence and Computational Intelligence, 5855, 48-58. Přejít k původnímu zdroji...